

HCM-003-001514 Seat No. _____

B. Sc. (Sem. V) (CBCS) Examination

October - 2017

Mathematics: BSMT - 502 (A)

Faculty Code: 003

Subject Code: 001514

1	
Time : $2\frac{1}{2}$ Hours]	[Total Marks : 70

- 1 Answer in brief: Each question carries one mark: 20
 - (1) What is full form of BCPL?
 - (2) Give complete list of keywords of language C.
 - (3) Write the range of real constants.
 - (4) How much memory is required to store a value of double type?
 - (5) Write general form of usage of conditional operators.
 - (6) Give the list of loop control structure.
 - (7) A self-contained block of statements that performs a coherent task of some kind is known as _____. Fill in the blank.
 - (8) Write output of the following: float number = 21;

number=12/3.

printf (The number is %f, number);

- (9) Write logical operators.
- (10) Which array is called matrix?
- (11) In the method of factorization (triangulation) the matrix is _____ Fill in the blank.
- (12) Prove that $(1+\Delta)(1-\nabla)=1$
- (13) Write the polynomial in factorial notation.
- (14) $\Delta x^{(n)} =$. Fill in the blank.

- (15) Gauss-Jordan method is modification of ______ . Fill in the blank.
- (16) Express $\Delta^2 y_8$ in terms of y_8 , y_7 and y_6
- (17) Express δ in terms of shift operators.
- (18) Represent the function $f(x) = x^3 2x^2 + x 1$ by synthetic division method.
- (19) Define: Interpolation
- (20) What is the value of $x^{[0]}$?

2 (A) Attempt any three:

6

- (1) Explain syntax and usages of "break" keyword in C-Language with example.
- (2) Explain scanf().
- (3) Explain float and double.
- (4) Explain Macro substitution. Explain in C-Language with syntax and examples.
- (5) Write a C-Program to find the value of one number raised to other for the number entered through keyword.
- (6) Explain Long and Short Integers.

(B) Attempt any three:

9

- (1) Write program to find sum of only ten non-negative numbers out of entered numbers through keyboard using continue statement.
- (2) Write a detailed note on "nested if-else statement".
- (3) Write a C-Program to pick up the largest of n given numbers entered through keyword.
- (4) Explain Syntax to declare and initialize twodimensional array in C.

- (5) Write a C-program to evaluate factorial of a given number.
- (6) Write a C-Program to input a 3×3 matrix and output its transpose matrix.
- (C) Attempt any **two**:

10

- (1) Write a C-Program to calculate $2 + 4 + 6 + \dots + 100$.
- (2) Write a detailed note on history of C-Language.
- (3) Write the rules to make names (Identifiers) in C. Give proper examples.
- (4) Write a short note on the operators in C-Language.
- (5) Explain the methods to declare one initialize the One-dimensional array.
- **3** (A) Attempt any **three**:

6

(1) If the interval of differencing is unity, then prove

that
$$\Delta \frac{2^x}{x!} = \frac{2^x (1-x)}{(x+1)!}$$
.

- (2) Prove that $\mu^2 = 1 + \frac{\delta^2}{4}$.
- (3) Write the equation of Gregory-Newton forward interpolation formula.
- (4) Explain Interpolation and Extrapolation.
- (5) Find the missing term in the following table:

х	1	2	3	4	5
у	2	5	7		32

(6) Explain the Linear Law.

(B) Attempt any three:

9

(1) In usual notations prove that
$$D = \frac{1}{h} \left[\Delta - \frac{\Delta^2}{2} + \frac{\Delta^3}{3} - \frac{\Delta^4}{4} + \dots \right]$$

- (2) Solve the System 10x + y + z = 12; 2x + 10y + z = 13; x + y + 5z = 7 by Gauss-Jordan Method.
- (3) Solve the Gauss-Seidel method for the following system of linear equations

$$28x + 4y - z = 32$$
; $x + 3y + 10z = 24$; $2x + 17y + 4z = 35$

(4) Construct a forward difference table from the following data and evaluate y_x .

х	0	1	2	3	4
у	1	1.5	2.2	3.1	4.6

(5) Evaluate
$$\Delta^2 (1-ax)(1-bx^2)(1-cx^3)(1-dx^4)$$

(6) The amount A of a substance remaining in a reaction system after an interval of time t in a certain chemical experiment is tabulated below:

$t(\min)$	2	5	8	11
A(gm)	94.8	87.9	81.3	75.1

Obtain the value of A, where t = 9 using Newton backward interpolation formula.

(C) Attempt any two:

10

- (1) Derive the Gregory-Newton backward interpolation formula.
- (2) Find the missing values in the following table of values of x and y:

Ī	х	0	1	2	3	4	5	6
Ī	у	-4	-2	_	_	220	546	1148

- (3) Explain the Triangularisation method.
- (4) Explain the Jacobi method of iteration.
- (5) Explain Court's method.